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Abstract 
 
This paper investigates the effect of uncertainty on the investment decisions of petroleum 
refineries in the US.  We construct uncertainty measures from commodity futures market and use 
data on actual capacity changes to measure investment episodes. Capacity changes in US 
refineries occur infrequently and a small number of investment spikes account for a large fraction 
of the change in industry capacity. Given the lumpy nature of investment adjustment in this 
industry, we empirically model the investment process using hazard models.  An increase in 
uncertainty measures decreases the probability a refinery adjusts its capacity. The results are 
robust to various investment thresholds and uncertainty measures used in the analysis. Our 
findings lend support to theories emphasizing the role of irreversibility in investment decisions.   

 
 

                                                 
† An earlier version of the paper was presented at the 25th North American Conference of International 
Association for Energy Economics (IAEE) in Denver in 2005. We thank Kevin Forbes, Shu Lin and Dan 
Sutter for helpful comments. We also benefit from conversations with Dennis O’Brien, Sid Gale, and 
Stephen Patterson.  



I. Introduction 
 

Dixit and Pindyck (1994) develop a theory of investment that focuses on the irreversibility 

inherent in many capital projects and the effect of uncertainty on the timing of these types of 

irreversible investment projects.  In their model, uncertainty in the future profitability of an 

investment that is irreversible, or partially irreversible, may cause a firm to delay an investment 

project in order to obtain additional information on the profitability of the investment.  Dixit and 

Pindyck refer to this as “option value of waiting to invest” and firms consider this “option” when 

making investment decisions.2  In this paper, we test this main prediction of their model by 

examining how the timing of capital projects responds to changes in the volatility of input and 

output prices.3

The paper examines capital expansion and contraction events at individual US oil refineries.  

We believe this is a good testing ground for the Dixit and Pindyck model for three reasons.  First, 

investments that involve the capacity expansion of a refinery will include a significant fraction of 

sunk costs.  The investment in capacity expansion in refineries is largely composed of structures 

that are usually engineered and integrated into an existing production facility. Once in place a 

refinery cannot easily divest itself of such a capacity expansion project without bearing 

significant costs. Thus, it is reasonable to believe that a significant fraction of such investments is 

irreversible.  Second, firms in the industry change their capacity in discrete investment and 

disinvestment bursts. Episodes of high investment activity are interspersed with episodes of zero 

investment activity. This pattern in US refineries is similar (though more stark) to recent 

empirical papers documenting the micro-adjustment patterns of plants and firms (Cooper, 

Haltiwanger and Power (hereafter CHP, 1999), Doms and Dunne (1998), and Nilsen and 

Schiantarelli (2003)). This discrete nature of investment in this industry will allow us to look at 

                                                 
2 An early discussion of nonconvex adjustment costs is provided in Rothschild (1971). Dixit and Pindyck 
(1994) emphasize the role of irreversibilities along with uncertainty in the investment process.    
3 For a complete survey on recent development in the investment under uncertainty literature, see Carruth et 
al. (2000).  Abel (1983) offers develops an alternative modeling framework where greater uncertainty 
actually increases the likelihood a firm invests. 
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the timing of capital projects and thus we will be able to see if firms delay capital projects when 

uncertainty rises.  Third, the industry has well developed commodity future markets for its main 

input, crude oil, and its main outputs, heating oil and gasoline.  We use the volatility in the futures 

prices to proxy for uncertainty in the economic environment in which refiners must make 

investment decisions.    

Our data include annual observations on refining capacities for almost all US refineries in 

existence over the period 1985-2003.  We use year-to-year changes in capacities to measure when 

firms undertake capital projects. The data measure only investment and disinvestment episodes 

that affect capacity expansion or contraction. These capacity-based data omit maintenance-driven 

investment and non-capacity changing investments such as investment in pollution control 

equipment.4   In the case of environmental investments which are important in this industry, the 

timing of these kinds of investment is likely to be quite unrelated to the firm’s optimal capital 

adjustment problem discussed in the literature.  By using physical capacity measures, we reduce 

these types of measurement problems in our data and improve our ability to measure the timing of 

capital projects.5   

The first part of our empirical analysis documents capital adjustment patterns in the US 

petroleum refining industry.  We find that capacity adjustments by refiners are very infrequent.  

Approximately three-quarters of the year-to-year changes in capacity are zero.  This pattern of 

inactivity in the investment data is consistent with models of irreversibility, as well as models that 

stress the presence of fixed adjustment costs (CHP and Cooper and Haltiwanger (2006)). The 

second part of the empirical analysis explores the relationship between price uncertainty and 

capacity adjustment.  We estimate hazard model of capacity adjustment to examine the effect of 

uncertainty on the probability a refinery adjusts its capacity. We find that increases in uncertainty 

                                                 
4 Caballero (2000) emphasizes the importance of distinguishing between maintenance-driven and 
expansion-driven investments. 
5 Two other recent studies use capacity changes to measure investment in the literature, Bell and Campa 
(1997) and Goolsbee and Gross (2000). 
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delays capacity changes, especially capital expansion projects.   Our results are robust to a variety 

of adjustment thresholds and uncertainty measures.   

The remainder of this paper proceeds as follows. Section II describes some basic features of 

the refining industry and the data that we use in the paper. In section III we discuss our measures 

of uncertainty. Section IV provides a detailed statistical analysis and presents empirical findings. 

Section V summarizes and concludes. 

 
II. Investment in the Refining Industry 

Constructing the capital stocks of firms and the changes in the capital stocks often involves 

difficult measurement issues.6  Typically, authors use accounting data on the current dollar value 

of purchased plant and equipment and apply aggregate depreciation rates and capital price indices 

to construct a constant-dollar firm-level capital stock. These standard approaches to capital 

measurement at the micro level contain a number of drawbacks.  On the one hand, many required 

data items for the creation of producer-level capital stocks are often missing at the micro level.  

For example, information on the economic depreciation of assets and the price of investment 

goods are typically unavailable at the producer level.  On the other hand, accounting data on new 

investment contain a mix of capital expenditures that includes expansion-driven spending, 

maintenance-driven spending and non-capacity enhancing investments such as pollution control 

and occupational safety equipment.  In the latter case, these may be mandated investments due to 

regulatory requirements. These mandated investments and maintenance-driven investments are 

driven by forces distinct from the firm’s decision to expand or contract its capacity to produce 

output.  Accounting data rarely allow the researcher to discriminate among these alternative 

investment categories.  Moreover, these accounting based data are influenced by tax code issues 

and usually represent a mix of historical and current dollar data series.  Economists prefer 

measures of the capital stock that are tied more directly to the physical capital stock or to the flow 

                                                 
6 See CEH (1995) and Goolsbee and Gross (2000) for a detailed discussion of measurement issues. 
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of services provided by the capital stock of the firm.  In this paper, we reduce some of the 

accounting-related problems by studying changes in actual capacities in refineries.  

We use the petroleum refinery capacity data from the “Petroleum Supply Annual” 

published by the Energy Information Administration (EIA), Department of Energy.  Beginning in 

1980, the EIA implemented a mandatory annual survey of refinery capacities except for the 

period of 1995-1998 during which the survey was done biennially. It surveys both crude oil 

processing (distillation) capacity and downstream capacities for all operable refineries located in 

the 50 U.S. states, Puerto Rico, the Virgin Islands, Guam and other U.S. possessions. To fill in 

the missing data in 1995 and 1997, we supplement the EIA data by a private survey of refining 

capacities in 1995 and 1997 from the Oil & Gas Journal (OGJ). 7   Because our primary 

uncertainty measure is derived from commodity futures market and unleaded gasoline futures 

markets did not exist before December 1984, our time period of analysis runs from 1985 to 2003. 

The final data set contains 224 refineries with a total of 3314 refinery-year observations.  

As our basic measure of capital, we focus on the crude processing capacity (atmospheric 

distillation capacity) of refineries located in the 50 U.S. states.8  Refining capacity is measured in 

two ways -- as the barrels per stream day (B/SD) and as the barrels per calendar day (B/CD). The 

former is “the maximum number of barrels of input (mainly crude oil) that a distillation facility 

can process within a 24-hour period when running at full capacity under optimal crude and 

product slate conditions with no allowance for downtime.” The latter is “the amount of input that 

a distillation facility can process under usual operating conditions and allows limitations in 

downstream capability and downtime due to scheduled maintenance, turnaround, and 

slowdowns” (EIA, 2000, p 165-166).  Throughout the analysis, we use refining capacities 

expressed as barrels per stream day in this study because changes in stream day capacities require 

a physical change in the actual processing units. 

                                                 
7 The OGJ data only reports capacities measured in calendar days. We multiply the EIA 1994 data by the 
percentage change in OGJ data to obtain the 1995 data, and similarly for 1997 data.  
8 Crude distillation is the first and necessary procedure in a continuous refining process.  
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To investigate the investment-uncertainty relationship, we focus on capacity changes at 

refineries. We define capacity expansions from year y to y+1 as our measure of investment and 

capacity reductions from year y to y+1 as measured disinvestment. Refiners can increase their 

capacities through conventional capital project (e.g. adding a catalytic cracking unit) and through 

debottlenecking investments which are smaller investments that increase refining capacities but 

do not alter the number of processing units (EIA Staff report, 1999).   Debottlenecking is usually 

accomplished at the same time as maintenance and repair. The additional capacity gained through 

debottlenecking is usually termed "capacity creep." Capacity reductions typically result from the 

shutdown of either a refinery or a distillation unit in a multi-unit refinery. Given that the 

debottlenecking can be done at minimum costs, one might expect refineries to frequently adjust 

their capacities.   However, as depicted below, this is not the case. 

Figure 1 shows the aggregate of capacity additions and the industry-level investment for 

petroleum refining (SIC code 2911 and NAICS code 32411) from the Annual Survey of 

Manufacturers (ASM) over the sample period. To accommodate construction lags, the ASM data 

is lagged for one year. It is striking to notice how the two series depart from each other.  Clearly a 

substantial component of the dollar amount of investment is not driven by capacity changes. 

Indeed, anecdotal evidence suggests that a significant fraction of the investment in the refining 

industry is due to product specification changes and the adoption of pollution control equipment 

in response to changes in environmental regulations. In a comment about building new refineries 

in the U.S., Bill Greehey, the CEO of an independent refiner Valero Energy Corporation, told the 

press that Valero would spend $1.7 billion on meeting federal gasoline requirements in 2004 and 

2005 (as reported in San Antonio Express, July 31, 2004). According to the Census Bureau’s 

Current Industrial Report, pollution abatement capital expenditure accounts for 10-15 percent of 

the overall investment by the petroleum refining industry over the sample period. Investment in 

these mandated areas probably has little to do with the level of demand and demand uncertainty.  
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 The micro-patterns of capacity change in percentage terms are shown in Figure 2.   The 

underlying data represent changes in capacity between year y and y+1 at the refinery level.  The 

large spike in the middle of the distribution indicates that 74 percent of the time refineries make 

no change to their capacity between two adjoining years. The large number of zero investment 

episodes could result from either the irreversibility nature of investment or a fixed component of 

adjustment costs. To distinguish between the two alternatives, one must resort to more structured 

econometric analysis which we will turn to in section IV of the paper. In addition, a significant 

number (11 percent) of non-zero observations are in the interval of (-0.05, +0.05). These patterns 

in capacity adjustment are even “lumpier” than those reported in Cooper, Haltiwanger and Power 

(1999), Doms and Dunne (1998), and Nilsen and Schiantarelli (2003).   For example, Nilsen and 

Schiantarelli report only 20 percent of their investment episodes in Norwegian manufacturing as 

being zero and Doms and Dunne (1998) state “…while a significant portion of investment occurs 

in a relatively small number of episodes, plants still invest in every period”.  Moreover, the 

additional capacity added in the industry is concentrated in a few investment episodes.  Roughly 

5% percent of all capacity expansion episodes (33 projects) account for 30 percent of the addition 

to capacity in the industry (Figure 3).  These additions occur in ongoing refineries since no new 

refineries have been built in the US during our period of analysis.  Alternatively, the large 

reductions in capacity observed in the data are due largely to the closure of refineries.  83 

refineries close during the 1985-2003 period and these closing refineries account for 63 percent of 

the overall reduction of capacity observed in the data (Figure 3). 

While it is plausible that a refinery may increase its capacity by a small amount through 

debottlenecking and incremental investment activity, it is less likely that a refinery would 

disinvest its capacity by a small amount. We suspect that some of the small reductions in 

capacities might be a result of either reporting errors or may reflect the fact that refinery 

engineers adjust the estimates of the capacity levels at their refinery based upon their ongoing 
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review of the data. 9    To test the sensitivity of our results to the presence of these small 

adjustments in capacity, we employ two sets of alternative thresholds to measure whether a 

change in capacity has occurred. The first set includes three relative thresholds: a zero threshold, 

a 5 percent threshold, and a 10 percent threshold. For the zero threshold, any capacity change 

above (below) zero is defined as investment (disinvestment). For the 5 (10) percent threshold: a 

capacity change greater than 5 (10) percent is defined as an investment and less than -5 (-10) 

percent is defined as a disinvestment. The second set includes two absolute capacity change 

thresholds: 2500 B/SD and 5000 BS/D.10 The investment and disinvestment using the absolute 

threshold values are similarly defined as the 5 (10) percent thresholds.  

Theories emphasizing the role of irreversibility imply that a refiner will put off investment 

decisions at times of high uncertainty. To shed light on the timing of capacity adjustments, Figure 

4 presents the distribution of durations between two investment/disinvestment episodes using the 

zero and the five percent thresholds. The duration is defined as the length (in years) of inaction 

period between two adjacent investment or disinvestment episodes in the same refinery.11 For 

instance, if a refinery invests in both year y and year y+1, the duration is zero. If it does nothing 

in year y+1 but invests in year y and y+2, the duration is one.  Several points are worth making. 

First, consistent with the large number of zero observations in Figure 2, the majority of the 

durations are above zero and the median duration for the 5 percent threshold series is 3 years. 

Second, the fraction of refineries with very long durations between investment episodes is quite 

small.  Third, we do see a significant number of zero duration events.  This may be due to the fact 

                                                 
9 We owe this point to Stephen Patterson, Survey Manager at EIA and Sidney Gale, Managing Director of 
EPIC Inc. 
10 While somewhat arbitrary, the 2500 B/SD and 5000 B/SD thresholds correspond to the 5% and 10% of a 
50000 B/SD refinery. Following Kerr and Newell (2003), we categorize a refinery as a small refinery if its 
capacity is below 50000 B/SD. We also experimented other absolute thresholds, including 2000 B/SD, 
3000 B/SD, 4000 B/SD, 6000 B/SD, 7000 B/SD, and the results are qualitatively similar to those reported 
below.   
11 Here we do not distinguish between an investment and a disinvestment.  

 8



that refinery investment episodes may span calendar years in the data.  In this case, refiners would 

report back-to-back years of changes in capacity.   

 

III. Measuring uncertainty 

In this study, we explore an alternative approach by making use of commodity derivatives 

trading data. The refining process involves distillation which "cracks" crude oil into different 

components to make petroleum products such as gasoline and heating oil. Crude oil, gasoline and 

heating oil are all actively traded in the futures market in the New York Mercantile Exchange 

(NYMEX). Our uncertainty indicator is based on a daily forward refining margin (or crack spread, 

denoted as FRM), which is defined as  

FRMd = 2*FGO
M,d + 1*FHO

M,d  - 3*FCO
M,d                                                                           (1) 

where GO, HO, and CO stands for unleaded gasoline, heating oil, and crude oil respectively. 

F(.)
M,d  denotes the price of the futures contract that is traded at day d and matures at month M.12  

The 3-2-1 refining margin reflects the gross profit from processing three barrels of crude oil into 

two barrels of unleaded gasoline and one barrel of heating oil. Because the 3:2:1 ratio 

approximates the real-world ratio of refinery output, it is commonly used in the oil industry to 

construct the refining margin. A recent EIA report (EIA, 2002, p. 21-22) notes that “Refinery 

managers are more concerned about the difference between their input and output prices than 

about the level of prices. Refiners’ profits are tied directly to the spread, or difference, between 

the price of crude oil and the prices of refined products. Because refiners can reliably predict their 

costs other than crude oil, the spread is their major uncertainty.”  

A common interpretation of future prices describes the future prices as a forecast of the 

future price of commodity that incorporates a risk premium (Fama and French (1987)).  In a 

discussion about forecasting performance of commodity futures prices, Tomek (1997) points out 

that although futures prices may not accurately predict future spot prices, they do as well or better 
                                                 
12 The deliveries of all petroleum futures are ratable over the entire delivery month (NYMEX website). 
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than econometric models.  Specific to the petroleum futures market, Ma (1989) compares the 

forecasting performance of petroleum futures (crude oil, heating oil, and leaded gasoline) markets 

with a variety of widely-used time-series models including random walk, ARIMA, and VAR 

models. She finds that, on average, forecasts based on futures markets outperform econometric 

models for all the three commodities. Fujihara and Mougoue (1997) provide evidence that 

petroleum futures prices are unbiased predictors of the future spot prices.  Given these findings, 

we believe that the forward refining margin defined in Eq.1 should proxy market participants’ 

expected gross margin for the industry in T based on current information.   

Analogous to papers using the standard deviation of stock returns, this paper uses the 

annual standard deviation of the daily forward refining margin as our uncertainty indicator. The 

NYMEX began trading crude oil futures in March 1983, unleaded gasoline futures in December 

1984, and heating oil futures in January 1980. The daily forward refining margin of (1) is 

calculated using daily close prices of all the three commodity contracts with 6 months time-to-

maturity. The 6-month maturity is chosen because it is the longest time horizon with which we 

can obtain a consistent data series. The annual measures of forward refining margin (Margin) and 

the associated uncertainty measure (σFRM)) are the mean and the standard deviation of daily 

forward margins as in (1) over a 12-month window and deflated with the implicit GDP deflator 

from the Bureau of Economic Analysis (BEA). Specifically,  

Margin=                                                                                          (1.a) NFRMN

d
d /)(

1∑ =

and σFRM=
1

)(
1

2

−

−∑ −

N
MARGINFRMN

d
d

                                                      (1.b) 

where N is the number of trading days in a given year. 

Figure 5 plots the time series of the Margin and σFRM. The σFRM series appear to be heavily 

influenced by geopolitical events in the Middle East. The spike in 1990 is related to the first Gulf-

War. Uncertainty rises again in 2003 surrounding the second Gulf War. Given the importance of 
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Persian Gulf in the world oil supply, it is not surprising that investors are less certain about future 

refining margins during periods where war threatens important supply sources.  

 

V.  Analysis of Capacity Adjustment 
 

A. The Empirical Framework  

The standard approach in the literature is to estimate a reduced form investment rate model. 

Given our data features episodes of capacity change interspersed with periods of inactivity, we 

make use of econometric techniques for survival analysis and estimate the effect of uncertainty on 

the timing of capacity adjustment. The survival time variable measures the time that a refinery 

stays in an inaction regime.  Many refineries have multiple capacity change episodes during the 

sample period and we reset an individual refinery’s clock to zero after each episode. Some 

refineries were in an ongoing inaction spell at the start of the sample period. For these refineries, 

we find out their last capacity change episode before 1985 and set the clock to zero for the first 

spell of each refinery.  

Let T denote the length of survival time (a refinery stays in an inaction regime) with the 

cumulative probability distribution function F(t). The probability that a refinery stays in an 

inaction regime longer than T is given by the survival function S(t)=1-F(t)=Pr(T>t). The hazard 

function gives the conditional probability that a refinery change its capcaity in the interval of ∆t 

after it stays in inaction until t.  Following the notation in Kiefer (1988), the hazard function can 

be written as 

t
tTttTtprt

Δ
≥Δ+<≤

=
→Δ

)|()( lim
0

λ .                                                                           (2) 

Using the hazard function, the survival function is written as  )(tS

])(exp[)](exp[)(
0∫−=Λ−=
t

dssttS λ                                                                   (3) 
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where  is the integrated hazard function. dsst
t

)()(
0
λ∫=Λ

We estimate two basic hazard models in the analysis.  Our primary analysis focuses on the 

capacity expansion episodes in the data, similar to the focus in CHP (1999) and Nilsen and 

Schiantarelli (2003).  In this case, we define an exit from a spell to be a capacity expansion event 

and treat all spells that end through capacity contraction as censored observations including 

refining closures.   The proportional hazard model in this case is given by  

)()'exp(),,,( 00 txxt λβλβλ =                                                                                     (4) 

where λ0 denotes the “baseline” hazard functions corresponding to zero values of the explanatory 

variables for the capacity expansion hazard.  β is a vector of parameters to be estimated and x is a 

vector of explanatory variables. The effect of the x’s on the conditional probability of ending an 

inactivity spell is to shift the baseline hazard proportionally (Kiefer, 1988).  We also estimate a 

capacity adjustment hazard that defines exit from an inactivity spell as simply any capacity 

change – expansion or contraction.   

The variables contained in x include both the Margin and Uncertainty(σFRM) variables 

discussed above and a number of additional variables. We control for the overall capacity 

utilization rate in the refining district to proxy for supply conditions in an area. 13 The variable 

Urate is the ratio of average daily input (crude) to average daily capacity.  To avoid endogeneity 

problems, Urate enters equation (8) and (9) with one year’s lag.  We expect that if supply 

conditions are tight in an area this may increase (decrease) the probability of an investment 

(disinvestment) episode occurring. Since, Doms and Dunne (1998) find that smaller plants and 

plants undergoing ownership change have lumpier investment patterns, we control for these 

factors as well. Ownchg is a dummy variable that is equal to 1 within the first 2 years of 

ownership change and zero otherwise.  Small is another dummy variable that is equal to 1 for 

                                                 
13 A complete description and map for refining districts can be found in EIA’s annual publication 
Petroleum Supply Annual.  
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refineries with capacity less than 50,000 B/SD and zero otherwise. To control for geographic and 

institutional differences across regions, a set of dummy variables for refining districts are also 

included in the model. 

The refining industry is one of the most heavily polluting industries and is subject to a 

number of environmental regulations. Using plant data from the Longitudinal Research Database, 

Becker and Henderson (2000) find that the differential air quality regulations reduce new plant 

births in ozone-nonattainment areas.14  Similarly, Greenstone (2002) finds that nonattainment 

counties have a lower plant-level growth rate relative to attainment counties. To control for the 

potential regulatory effect on the timing of refinery investments, we also make use of the data on 

air quality attainment status, and in particular, focus on the ozone attainment status.15  Ozone is a 

major component of smog and is formed at the reaction of volatile organic compounds (VOC) 

and nitrogen oxides (NOx). Refining is a major source of both VOC and NOx, ranking first and 

second, respectively, among 18 air polluting industries (EPA, 2004).  Ozone is a dummy variable 

that is equal to 1 if a refinery located in county that is nonattainment for ozone in a particular year 

and zero otherwise. If new investments result in an increase in the emission of a criteria pollutant, 

the cost of adjustment will be higher in nonattainment counties and this will lengthen the inaction 

period prior to an investment episode. We expect the Ozone variable to be negative in the 

investment hazard.  

The recent literature on the cost of capital adjustments (CHP, 1999) suggests that positive 

duration dependence is consistent with non-convex forms of adjustment costs.  The reason is that 

under the assumption of non-convex costs of adjustment (say, a fixed cost), the likelihood of net 
                                                 
14 According to the Clean Air Act and its amendments, the Environmental Protection Agency (EPA) uses 
four criteria pollutants -- carbon monoxide (CO), ozone (O3), sulfur dioxide (SO2), and particulate matter – 
as indicator of air quality and establishes national air quality standards for each of them. A county is 
designated “nonattainment” if its air pollution level of a particular pollutant persistently exceeds the 
relevant national standards. Plants that emit a regulated pollutant in nonattainment counties are subject to 
stricter regulations (e.g. requiring polluters to buy a permit) than those located in attainment counties.    
15 We focus on the attainment status of ozone because it has been the most persistent air pollution problem 
facing the EPA and because more refineries are located in ozone nonattainment counties than the 
nonattainment counties of any other pollutants. However, our results that follow are robust to the inclusion 
of other pollutants and available from the authors upon request.  
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gains from a new investment being able to justify the fixed cost increases in the time since the last 

investment. In contrast, the best response to convex form of adjustment cost is to invest whenever 

there is a capital shortage. This yields positive correlation in producer-level investment series and 

the prediction of negative duration dependence in the hazard, though one should not observe 

lumpy investment.   Models with irreversibility also yield positive correlations in investment and 

the prediction of negative duration dependence in the hazard (Bigsten, et al (2005)).  The Weibull 

model is a natural choice for testing duration dependence. The baseline hazard for the Weibull 

model has the following form (the subscripts are dropped for ease of exposition): 

1
0 )( −= ρρλ tt                                                                                                           (5) 

When ρ=1, the Weibull model reduces to an exponential model with constant hazard. When ρ >1, 

the Weibull model has positive duration dependence — the hazard increases in the length of the 

duration. When ρ <1, the hazard has negative duration dependence.  

In an attempt to account for the unobserved heterogeneity at the refinery level, we assume a 

multiplicative error term (frailty) v associated with each hazard specification  

νλβλβλ )()'exp(),,,( 00 txxt =                                                                                    (6) 

The frailty (v) is assumed to be gamma distributed with mean one and variance θ which is a 

standard assumption in this approach. Whether the unobserved heterogeneity is significant can be 

tested by testing whether the parameter θ is zero. When the null hypothesis is true, the model 

reduces to a model without frailty. We allow the frailties to be shared over the same refinery (a 

shared-frailty model).  

Kiefer (1988, p 665) shows that equation (9) can be rewritten in the form of 

vxt +=− βρ 'ln .                                                                                               (7) 

Thus, the effect of x is to directly prolong or shorten the survival time t by a factor exp(-x’β/ρ) 

depending on whether the factor is greater or less than one.  
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B. Hazard Model Results 

For the sake of robustness, we calculate three pairs of annual Margin and σFRM series by 

alternating the calculation window. The first pair (Margin1 and σFRM1 shown in Figure 5) is 

simply the mean and the standard deviation of daily margins in year y. To allow for construction 

lags, we build 6- and 3- month lags in the second (Margin2 and σFRM2) and the third pairs 

(Margin3 and σFRM3), respectively. Margin2 and σFRM2 are the mean and standard deviation of 

daily margins from July of year y-1 to June of year y, while Margin3 and σFRM3 are similarly 

defined from October of year y-1 to September of year y. All margins and uncertainty measures 

are deflated with the implicit GDP deflator from the Bureau of Economic Analysis (BEA).  

The estimation results with alternative uncertainty measures are reported in Table 2. To 

save space, we only present the results for the 5% relative threshold and 5000 B/SD absolute 

threshold as the two thresholds lead to roughly the same number of spells. The empirical results 

for other threshold values are qualitatively similar and are available from the authors upon request. 

In the capacity expansion columns, the estimated coefficients for all three uncertainty measures 

are negative and significant at conventional levels. Take the estimated coefficient in Panel B as an 

example.  A 10 percent increase in σFRM2 lowers the conditional probability of ending an inaction 

spell with an capacity expansion episode (or increases the length of the spell) by 3.5 percent for 

the relative threshold and 5 percent for the absolute threshold.16 As expected, both the Margin 

and Urate variables are positive in the capacity expansion hazard, although Margin is generally 

not significant and Urate is significant only when the investment is measured with absolute 

thresholds. With respect to the other variables in the capacity expansion hazard, ownership 

changes appear not to affect the investment hazard.  The hazard is lower for smaller refineries 

indicating longer durations between investment episodes and this is especially true under the 

5000 B/D definition.  A small refiner is 39% less likely to end their inactivity spell with a 5% 

                                                 
16 The model predicted the median length of an inaction spell ending with an investment episode to be 7.9 
years. 
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increase in refining capacity than a larger refiner. Ozone has the expected sign although is only 

statistically significant under the relative threshold. A refinery in an ozone non-attainment county 

is 25% less likely to invest comparing with those in attainment counties. 

Looking at the capacity change hazard that allows spells to end with either a positive or 

negative change in capacity, uncertainty still lowers the likelihood of capacity change in almost 

all the hazards.  Most of the other variables are not statistically significant with the exception of 

the indicator variable on refining size. It has opposite signs in the two capacity change hazard and 

statistically significant. This seemingly conflicting result reflects the fact that a 5% change in 

capacity is a rarer event in large refineries compared to small refineries and thus smaller 

refineries are likely to exit a spell with a relatively larger capacity change.  However, a 5000 B/D 

change is more common in large refineries.   

The test of duration dependence indicates that ρ is only significantly different from 1 in 

the capacity change hazard (especially under the 5000 B/D definition) and only shows mildly flat 

upward sloping hazard. This result differs from CHP (1999) and Nilson and Schiantarelli (2003), 

both of which report a positive duration dependence. The technology of the refining industry 

allows refiners to increase capacities by small amounts through debottlenecking and it is usually 

more costly to build a new crude processing unit or a new refinery. Thus, both the technological 

and econometric evidence suggest some elements of capacity change may be consistent with the 

presence of convex adjustment costs.  One possibility is that refiners making debottlenecking type 

adjustments may incur convex type costs while the addition of entire cracking units may require 

the refiner to bear significant fixed adjustment costs.  The presence of a mix of fixed and convex 

adjustments costs is explored in Cooper and Haltiwanger (2006).  Finally, the log likelihood ratio 

test for frailty suggests that there is a statistically significant level of unobserved heterogeneity 

and the frailty model specification is necessary.   

To check whether the results are sensitive to our threshold definition of capacity adjustment, 

we report a set of results using alternative adjustment thresholds in Table 3.  The top panel uses 
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the zero threshold definition and this definition simply makes use of the raw changes in capacity 

to measure investment episodes.  Recall the 5% (10%) and 2500 B/SD (5000 B/SD) thresholds 

require a change of 5% (10%) and 2500 B/SD (5000 B/SD) or more, respectively, to trigger an 

investment/disinvestment episode. All three panels in Table 3 are consistent with the findings in 

Table 2.  The uncertainty measure is negative and statistically significant in the both the capacity 

expansion and capacity change hazards across all thresholds.  The magnitude of the effect is 

somewhat greater however as the threshold increases.  A 10% increase in uncertainty decreases 

the hazard rate by 3% under the zero threshold and by 4.2% under the 10% threshold. Moreover, 

the results for the other variables in the model appear to have the same pattern across the 

alternative thresholds with the exception of size.  The effect of size is again sensitive to the 

definition of thresholds and the definition of the spell (capacity expansion or capacity change).  

As the %-based threshold increases, the coefficient on the Small variable increases. Note, 

however, that this is not the case under the absolute threshold definition.  

Table 4 present the results of a model where we replace the refining margin measure of 

uncertainty with a stock market index based measure of uncertainty. We construct an uncertainty 

measure (σOI) from a stock market index that is designed to measure the financial performance of 

publicly traded oil companies. The oil index (symbol: XOI) is comprised of 13 major oil 

companies (including independent refiners) and is traded at the American Stock Exchange 

(AMEX). σOI is the annual standard deviation of the daily return of this oil index.  Again, the 

results are clear.  Across alternative thresholds, there is no statistically significant effect of stock 

market uncertainty on the capacity expansion decision. 

The last exercise we perform presents some alternative specifications for our empirical 

model.  We present an accelerated failure time (AFT) model that allows for a nonmontonic 

baseline hazard – the lognormal and a partial likelihood Cox (1975) model that does not assume 

any functional form for the baseline hazard model.  The Weibull model presented throughout the 
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analysis allows for increasing or decreasing hazards, however, it assumes the baseline hazard λ0(t) 

function is monotonically increasing or decreasing in time. In contrast, the baseline hazard 

function of the lognormal models first increases then decreases in time.17 The Cox model is 

estimated to see if our results are sensitive to the parameterization of the baseline hazards. The 

advantage of the parametric forms is that they are more efficient then the Cox proportional hazard 

model if the assumptions regarding the parameterization of the baseline hazard are correct 

(Favero et al, 1994).  

Table 5 presents the results for the investment hazard of these alternative specifications.  

The coefficients in the lognormal models are interpreted quite differently from the proportional 

hazard models (Weibull and Cox).  A positive coefficient in the lognormal model means that time 

to failure is delayed while a negative coefficient means that time to failure is accelerated.   The 

results from both the lognormal and the Cox models are quite similar and consistent with the 

Weibull model (presented in column (1) and (3) of the table).  In the lognormal model, an 

increase in the uncertainty of the refining margin delays the ending of a spell while an increase in 

the margin and the capacity utilization rate accelerates the ending of a spell. The shape parameter 

indicates the baseline hazard increases for the first 3-4 years after a capacity expansion episode 

and then decreases. In the next subsection, we turn to a more flexible discrete hazard specification 

to further examine the duration dependence. The estimated coefficients from the Cox model are 

fairly close to the Weibull model.  The results are consistent across all investment thresholds.  

 

C. Discrete Hazard Models(INCOMPLETE) 

In the above analysis, we have employed continuous hazard specifications. To check 

whether our results are sensitive to the continuous time assumption, we present a model of 

                                                 
17 Both the lognormal and the log-logistic models allow for a non-monotonic baseline hazard function. 
Although not reported, the empirical results from the log-logistic model are similar to those of the 
lognormal models in Table 5. The lognormal models yield a higher log likelihood values.  
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discrete hazard model that is similar to CHP (1999) and Nilsen and Schiantarelli (2003) in this 

subsection.  Following Jenkins (1995) and CHP, we parameterize the hazard as  

2
( , , ) 1 exp( exp( ' ))

S

s siy iy
s

t x D xλ β ϕ γ
=

= − − + +∑ β

siy iy

                                     (8) 

where Dsiy  is a set of duration dummies, equal to 1 if year y is the sth year from the last 

investment episode.18 S denotes the longest spell duration. xiy is a vector of explanatory variables 

as defined in section IV.A. φ is the intercept, γ’s and β’s are the coefficients to be estimated. 

From the estimated γ’s, one can construct a non-parametric estimation of the baseline hazard.  

To control for the unobserved heterogeneity, we have also applied Heckman and Singer’s 

(1984) approach by allowing the intercept term φ in the hazard function (8) to differ. We model 

the distribution of the φ by a discrete distribution of Z mass points. Each mass point has 

probability αz. The hazard function for a spell belonging to type z is: 

2
( , , ) 1 exp( exp( ' ))

S

z z s
s

t x D xλ β ϕ γ
=

= − − + +∑ β

                                                

                                            (9) 

The maximum likelihood estimation produces estimates of the parameters φz’s,  βz’s, and γs’s, as 

well as the estimated probabilities (αz’s). 

Table 6 reports the results from estimating (11) and (12) with zero, 5%, and 2500 B/SD 

thresholds. The results from using 10%, 5000 B/SD thresholds are not materially different and 

therefore omitted for brevity’s sake. In estimating (12), we have set the number of mass points Z 

= 2 (φ 1 is normalized to zero). The results are virtually the same if we set Z = 3. The estimated 

α’s indicate that 80-90% of the spells belong to Group 1. The signs of the estimated coefficients 

for Margin, σFRM, Urate, and Small are all consistent with Table 2-4. In particular, the uncertainty 

measure σFRM is negative and significant in five out of the six model specifications and thresholds, 

 
18 For example, if an investment episode occurs in year t, then s is equal to 1 in year t+1.  
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indicating that our finding of a negative relationship between uncertainty and investment in 

previous sections is not sensitive to the choice of continuous hazard models. 

 Figure 6 depicts the shape of the baseline hazards implied by the estimated coefficients 

of the duration dummies in Table 6. The figures in 6_a, 6_c, and 6_e present the baseline hazard 

functions for the no-frailty case. The hazard function is downward sloping for the first three years 

(up to D2) following an investment episode, and remains relatively flat after the third year. 

However, once the unobserved heterogeneity is controlled for, the hazard rates in the first three 

years are not significantly different from the latter years. The increasing hazard in CHP (1999) 

and the U-shape pattern in Nilsen and Schiantarelli (2003) do not appear in our data.  

 

V. Conclusion 

 There are two main contributions of the paper. First, the paper uses forward measures 

from financial markets on commodities to construct estimates of market uncertainty.  These 

measures of commodity price uncertainty reflect uncertainties in both input and output prices 

faced by the refiner.  Refiners’ decisions to make investments are clearly related to these 

measures of uncertainty.  As uncertainty rises, refiners delay their investment decisions. This 

finding agrees with a number of papers that emphasize the option-value of waiting to invest.  

Second, we use data on changes in the actual capacity of refiners to measure investment episodes.  

We believe that these data offer a cleaner assessment of the capital stock changes of producers 

than those based on accounting type data.  We also show that our results are very robust to 

investment thresholds used in the analysis and model specifications.  
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Figure 1 
 Aggregate Investment and Capacity Addition 
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Data Source: 
(1) Capacity addition is from Petroleum Supply Annual of EIA, various issues. 
(2) ASM 1985-1996 investment is from NBER “Manufacturing Industry Productivity Database” 

collected by Bartelsman, Becker, Gray. 1997-2003 data is from the Annual Survey of 
Manufacturers, Census Bureau and is deflated the price index of private nonresidential structures 
investment in the Economic Report to the President.   

 
 
 
Figure 2 

Refinery Capacity Change Distribution 
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Total number of observations: 3324.  
The far left bar (-1) represents complete shut-down refineries. 
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Figure 3 
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Figure 4 
 

Distribution of Durations between Two Capacity Change Episodes 
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Notes 
Duration 1: Years of duration between two capacity change episodes with zero threshold.  
Duration2: Years of duration between two capacity change episodes with 5% threshold.  
 
 
 
 
Figure 5 

Forward Refining Margin and Uncertainty Measure 
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Figure 6_c                                                                                                      Figure 6_d 
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Figure 6_e                                                                                                    Figure 6_f 
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Table 1. Summary Statistics 

 Mean Std. Deviation Minimum Maximum 

Urate1 (%) 86.98 7.66 60.71 102.80 

Margin1 ($/B) 4.75 0.57 3.66 6.03 

Margin2 ($/B) 4.72 0.64 3.57 6.05 

Margin3 ($/B) 4.72 0.58 3.48 5.96 

σFRM1, ($/B) 0.64 0.30 0.25 1.57 

σFRM2, ($/B) 0.59 0.24 0.22 1.24 

σFRM3 ($/B) 0.62 0.24 0.21 1.15 

σOI (%) 1.15 0.39 0.62 2.14 
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Table 2.  Estimation Results with Alternative Uncertainty Measures  
(5% and 5000 B/D Thresholds) 

 Capacity Expansion  Overall Capacity Change 
  5% Threshold 5000 B/D Threshold 5% Threshold 5000 B/D Threshold 

Panel A 

Margin1 0.096 
(0.104) 

0.092 
(0.113)  

-0.044 
(0.083) 

-0.048 
(0.089) 

σFRM1 -0.377* 
(0.205) 

-0.584*** 
(0.220)  

-0.383** 
(0.175) 

-0.507*** 
(0.183) 

Urate -0.001 
(0.009) 

0.022** 
(0.010)  

-0.009 
(0.008) 

0.010 
(0.008) 

Ownchg -0.001 
(0.204) 

-0.020 
(0.198)  

0.017 
(0.173) 

-0.130 
(0.177) 

Small -0.488*** 
(0.148) 

-2.019*** 
(0.233)  

0.226* 
(0.122) 

-0.501*** 
(0.159) 

Ozone -0.298** 
(.147) 

-0.220 
(0.168) 

 -0.190 
(0.123) 

-0.165 
(0.142) 

ρ (H0: ρ=1) 1.040 
(0.059) 

1.085 
(0.056) 

 1.090 
(0.053) 

1.132** 
(0.051) 

LR test (H0: θ=0), χ2  5.10** 17.39***  6.61*** 28.69*** 
No of spells 600 586  600 586 
Log likelihood -614.93 -569.99  -688.46 -677.84 

Panel B 

Margin2 0.147 
(0.101) 

0.188* 
(0.109)  

0.055 
(0.081) 

0.096 
(0.086) 

σFRM2 -0.579** 
(0.266) 

-0.838*** 
(0.281)  

-0.488** 
(0.221) 

-0.601*** 
(0.227) 

Urate 0.001 
(0.010) 

0.023** 
(0.010)  

-0.008 
(0.008) 

0.013 
(0.008) 

Ownchg -0.016 
(0.204) 

-0.045 
(0.198)  

0.008 
(0.173) 

-0.144 
(0.177) 

Small -0.487*** 
(0.148) 

-2.014*** 
(0.233)  

0.234* 
(0.122) 

-0.485*** 
(0.160) 

Ozone -0.288* 
(0.147) 

-0.199 
(0.168) 

 -0.182 
(0.123) 

-0.153 
(0.142) 

ρ (H0: ρ=1) 1.042 
(0.059) 

1.088 
(0.057) 

 1.089 
(0.053) 

1.134** 
(0.051) 

LR test (H0: θ=0): χ2 5.25** 17.44***  6.76*** 29.04*** 
No. of spells 600 586  600 586 
Log likelihood -614.15 -569.01  -689.08 -679.35 

Panel C 

Margin3 0.132 
(0.105) 

0.159 
(0.114)  

0.009 
(0.084) 

0.036 
(0.090) 

σFRM3 -0.413* 
(0.251) 

-0.647** 
(0.268)  

-0.333 
(0.207) 

-0.462** 
(0.217) 

Urate 0.001 
(0.009) 

0.021** 
(0.010)  

-0.009 
(0.008) 

-0.010 
(0.008) 

Ownchg -0.009 
(0.204) 

-0.033 
(0.198)  

0.009 
(0.173) 

-0.138 
(0.177) 

Small -0.482*** 
(0.147) 

-2.005*** 
(0.232)  

0.236* 
(0.122) 

-0.482*** 
(0.160) 

Ozone -0.291** 
(0.147) 

-0.206 
(0.167) 

 -0.184 
(0.123) 

-0.158 
(0.143) 

ρ (H0: ρ=1) 1.041 
(0.059) 

1.084 
(0.057) 

 1.089** 
(0.053) 

1.132** 
(0.051) 

LR test (H0: θ=0), χ2 5.01** 17.05***  6.42*** 28.81*** 
No. of spells 600 586  600 586 
Log likelihood -615.13 570.64  -690.21 -380.57 
Notes: (1) Regional dummies are included but not reported. (2) Standard errors are reported in parenthesis. (3) *** (**, 
*) denotes significance at the 1 (5, 10) percent level. 
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Table 3. Estimation Result with Different Threshold Values of Investment 
 Capacity Expansion Capacity Change 

 Zero threshold   Zero threshold 
0.078 

(0.076) 
 0.036 Margin2 (0.064) 

 

σFRM2 -0.499*** 
(0.194) 

 -0.364** 
(0.165) 

 

Urate 0.022*** 
(0.007) 

 0.014** 
(0.006) 

 

Ownchg 0.146 
(0.136) 

 0.148 
(0.120) 

 

Small -1.024*** 
(-0.128) 

 -0.423*** 
(0.108) 

 

Ozone -0.248** 
(0.118) 

 -0.194* 
(0.103) 

 

ρ (H0: ρ=1) 1.151*** 
(0.039) 

 1.185*** 
(0.036) 

 

LR test (H0: θ=0), χ2 25.02***  30.14***  
No. of spells 957  957  
Log likelihood -1045.88  -1132.14  

 5% threshold 2500 B/D threshold 5% threshold 2500 B/D threshold 

Margin2 0.147 
(0.101) 

0.215** 0.055 
(0.081) 

0.119 
(0.075) (0.092) 

-0.579** 
(0.266) 

-0.766*** 
(0.233) 

-0.488** 
(0.221) 

-0.546*** 
(0.196) σFRM2 

0.001 
(0.010) 

0.027*** 
(0.009) 

-0.008 
(0.008) 

0.015** 
(0.007) Urate 

-0.016 
(0.204) 

-0.055 
(0.171) 

0.008 
(0.173) 

-0.059 
(0.152) Ownchg 

-0.487*** 
(0.148) 

-1.510*** 
(0.169) 

0.234* 
(0.122) 

-0.545*** 
(0.135) Small 

-0.288* 
(0.147) 

-0.092 
(0.137) 

-0.182 
(0.123) 

0.076 
(0.122) Ozone 

1.042 
(0.059) 

1.136*** 
(0.048) 

1.089 
(0.053) 

1.170*** 
(0.044) ρ (H0: ρ=1) 

LR test (H0: θ=0), χ2 5.25*** 19.33*** 6.72*** 30.81*** 
No. of spells 600 724 600 724 
Log likelihood -614.15 -745.29 -689.08 -839.55 

 10% threshold 5000 B/D threshold 10% threshold 5000 B/D threshold 

Margin2 0.250* 
(0.130) 

0.188* 0.064 
(0.097) 

0.096 
(0.086) (0.109) 

-0.726** 
(0.353) 

-0.838*** 
(0.281) 

-0.526* 
(0.273) 

-0.601*** 
(0.227) σFRM2 

-0.011 
(0.013) 

0.023** 
(0.010) 

-0.013 
(0.010) 

0.013 
(0.008) Urate 

-0.070 
(0.265) 

-0.045 
(0.198) 

-0.011 
(0.217) 

-0.144 
(0.177) Ownchg 

0.112 
(0.202) 

-2.014*** 
(0.233) 

0.821*** 
(0.158) 

-0.485*** 
(0.160) Small 

-0.357* 
(0.205) 

-0.199 
(0.168) 

0.190 
(0.154) 

-0.153 
(0.142) Ozone 

0.995 
(0.082) 

1.088 
(0.057) 

1.028 
(0.070) 

1.134** 
(0.051) ρ (H0: ρ=1) 

LR test (H0: θ=0), χ2 8.40*** 17.44*** 5.46*** 29.04*** 
No. of spells 444 586 444 586 

-679.35 Log likelihood -400.66 -569.01 -484.96 
Notes: (1) Regional dummies are included but not reported. (2) Standard errors are reported in parenthesis. (3) *** (**, 
*) denotes significance at the 1 (5, 10) percent level. 
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Table 4.  Investment Hazard Using Stock Price Volatilities 

 Relative Thresholds Absolute Thresholds 

 
Margin  Stock Index Margin  Stock Index 

(σOI) (σFRM2) (σOI) (σFRM2) 
 Zero Threshold (957 Spells)  

Margin2 0.082 
(0.076) 

0.015 
(0.072)   

Uncertainty -0.514*** 
(0.194) 

0.108 
(0.111)   

Urate 0.025*** 
(0.007) 

0.027*** 
(0.007)   

ρ (H0: ρ=1) 1.151*** 
(0.039) 

1.154*** 
(0.039)   

Log Likelihood -1048.10 -1051.24   

 5% Threshold (600 Spells) 2500 B/D Threshold (724) 
0.150 

(0.101) 
0.028 

(0.099) 
0.216** 0.071 

(0.086) Margin2 (0.092) 
-0.596** 
(0.266) 

-0.149 
(0.161) 

-0.772*** 
(0.233) 

-0.064 
(0.136) Uncertainty 

0.004 
(0.010) 

0.002 
(0.010) 

0.029*** 
(0.009) 

0.029*** 
(0.009) Urate 

1.044 
(0.059) 

1.040 
(0.059) 

1.136*** 
(0.048) 

1.131*** 
(0.048) ρ (H0: ρ=1) 

Log Likelihood -616.04 -618.18 -745.51 -751.08 

 10% Threshold (444 Spells) 500 B/D Threshold (586) 
0.254* 
(0.130) 

0.148 
(0.129) 

0.193* 0.018 
(0.104) Margin2 (0.109) 

-0.745** 
(0.353) 

-0.009 
 (0.217) 

-0.852*** 
(0.281) 

-0.168 
(0.162) Uncertainty 

-0.007 
(0.012) 

-0.009 
(0.013) 

0.026** 
(0.010) 

0.026** 
(0.010) 

Urate 

1.007 
(0.082) 

0.991 
(0.082) 

1.088 
(0.057) 

1.081 
(0.056) 

ρ (H0: ρ=1) 

Log Likelihood -402.17 -404.50 -569.72 -573.95 
Notes: (1) Standard errors are in parenthesis. (2) *** (**, *) denotes significance at the 1 (5, 10) percent level. 
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Table 5. Investment Hazard Result with Alternative Specifications 

 Relative Thresholds Absolute Thresholds 

 Weibull Log Normal Cox Weibull Log Normal Cox 

 Zero Threshold (957 Spells)  

Margin2 0.082 
(0.076) 

-0.056 
( .064) 

0.084 
(0.060)  

  

σFRM2 -0.514*** 
(0.194) 

0.453***  
(0.167) 

-0.527*** 
(0.154)  

  

Urate 0.025*** 
(0.007) 

-0.019*** 
(0.006) 

0.019*** 
(0.007)  

  

Shape Parameters 1.151*** 
(0.039) 

0.922*** 
(0.030) 

    

Log Likelihood -1048.10 -970.83 -3725.74    

 5% Threshold (600 Spells)  2500 B/D Threshold (724 Spells) 

Margin2 0.150 
(0.101) 

-0.165 
(0.107) 

0.151* 
(0.084) 

0.216** 
(0.092) 

-0.205** 
(0.083) 

0.218*** 
(0.072) 

σFRM2 -0.596** 
(0.266) 

0.611** 
(0.283) 

-0.546** 
(0.222) 

-0.772*** 
(0.233) 

0.748*** 
(0.215) 

-0.693*** 
(0.186) 

Urate 0.004 
(0.010) 

-0.004 
(0.010) 

0.005 
(0.010) 

0.029*** 
(0.009) 

-0.016** 
(0.008) 

0.020** 
(0.009) 

Shape Parameters 1.044 
(0.059) 

1.184*** 
(0.054)  1.136*** 

(0.048) 
0.995*** 
(0.038)  

Log Likelihood -616.04 -595.70 -1710.28 -745.51 -708.90 -2406.20 

 10% Threshold (444 Spells) 5000 B/D Threshold (586 Spells) 

Margin2 0.254* 
(0.130) 

-0.317** 
(0.153) 

0.225* 
(0.122) 

0.193* 
(0.109) 

-0.183* 
(0.107) 

0.203** 
(0.099) 

σFRM2 -0.745** 
(0.353) 

0.817** 
(0.419) 

-0.666** 
(0.311) 

-0.852*** 
(0.281) 

0.969*** 
(0.281) 

-0.788*** 
(0.250) 

Urate -0.007 
(0.012) 

-0.003 
(0.115) 

0.005 
(0.013) 

0.026** 
(0.010) 

-0.013 
(0.010) 

0.018* 
(0.011) 

Shape Parameters 1.007 
(0.082) 

1.396*** 
(0.092)  1.088 

(0.057) 
1.115** 
(0.051)  

Log Likelihood -402.17 -392.72 -900.18 -569.72 -554.25 -1623.43 
Notes:  (1) Standard errors are in parenthesis. (2) *** (**, *) denotes significance at the 1 (5, 10) percent level. 
  (3) The significance levels of ancillary parameters (ρ, δ, γ) are based on logarithm transformations.   (4) The Cox model reports partial log-likelihood 
values. 
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Table 6. Discrete Investment Hazard Estimation Results 
 

 Zero Threshold 5% Threshold 2500 B/D Threshold 
 Logit Mass Point 

Logit Logit Mass Point 
Logit Logit Mass Point 

Logit 

Margin2 0.084 
(0.075) 

0.013 
(0.095) 

0.160 
(0.101) 

0.036 
(0.137) 

0.243*** 
(0.091) 

0.165 
(0.112) 

σFRM2 -0.618*** 
(0.198) 

-0.482** 
(0.243) 

-0.590** 
(0.267) 

-0.306 
(0.342) 

-0.825*** 
(0.237) 

-0.663** 
(0.278) 

Urate 0.022*** 
(0.007) 

0.036*** 
(0.011) 

0.004 
(0.009) 

0.027* 
(0.016) 

0.023*** 
(0.009) 

0.037*** 
(0.013) 

Small -0.818*** 
(0.104) 

-1.006*** 
(0.157) 

-0.430*** 
(0.130) 

-0.581*** 
(0.175) 

-1.260*** 
(0.148) 

-1.530*** 
(0.217) 

Ozone -0.153* 
(0.094) 

-0.178 
(0.112) 

-0.272** 
(0.131) 

-0.304* 
(0.171) 

-0.081 
(0.112) 

-0.111 
(0.131) 

D2 -0.429*** 
(0.117) 

-0.098 
(0.206) 

-0.201 
(0.189) 

0.465 
(0.415) 

-0.267* 
(0.143) 

0.069 
(0.253) 

D3 -0.441*** 
(0.134) 

-0.052 
(0.245) 

-0.217 
(0.199) 

0.753 
(0.626) 

-0.289* 
(0.160) 

0.099 
(0.279) 

D4 -0.882*** 
(0.179) 

-0.466 
(0.287) 

-0.906*** 
(0.265) 

0.079 
(0.658) 

-0.791*** 
(0.214) 

-0.388 
(0.320) 

D5 -1.038*** 
(0.207) 

-0.626** 
(0.314) 

-0.796*** 
(0.259) 

0.124 
(0.637) 

-0.838*** 
(0.236) 

-0.468 
(0.337) 

D6 -0.981*** 
(0.220) 

-0.563* 
(0.327) 

-0.543** 
(0.249) 

0.437 
(0.649) 

-0.876*** 
(0.259) 

-0.474 
(0.363) 

D7 -0.811*** 
(0.224) 

-0.414 
(0.328) 

-0.776*** 
(0.293) 

0.141 
(0.658) 

-0.761*** 
(0.274) 

-0.392 
(0.372) 

D8 -0.815*** 
(0.245) 

-0.426 
(0.339) 

-0.886*** 
(0.325) 

0.035 
(0.679) 

-0.731** 
(0.292) 

-0.366 
(0.382) 

D9 -0.724*** 
(0.252) 

-0.300 
(0.352) 

-0.809** 
(0.325) 

0.134 
(0.691) 

-0.571** 
(0.283) 

-0.167 
(0.375) 

D10 -1.354*** 
(0.385) 

-0.898* 
(0.462) 

-0.532** 
(0.313) 

0.462 
(0.698) 

-1.196*** 
(0.419) 

-0.777 
(0.486) 

D11 -0.526* 
(0.277) 

-0.118 
(0.376) 

-0.876** 
(0.374) 

-0.005 
(0.702) 

-0.886** 
(0.367) 

-0.521 
(0.452) 

D12 -0.654** 
(0.326) 

-0.251 
(0.418) 

-1.339*** 
(0.464) 

-0.349 
(0.775) 

-1.370*** 
(0.458) 

-1.200** 
(0.549) 

D13 & above -1.557*** 
(0.222) 

-1.132*** 
(0.335) 

-0.970*** 
(0.194) 

0.044 
(0.652) 

-1.092*** 
(0.184) 

-0.670 
(0.300) 

Constant 1 2.410*** 
(0.775) 

-3.828***   
(1.216) 

-2.030* 
(1.081) 

-4.499** 
(1.841) 

-3.478*** 
(0.979) 

-4.817*** 
(1.336) 

Constant 2  
 

2.296*** 
(0.513)  3.231*** 

(0.572)  3.200*** 
(0.623) 

α1  0.838 
(0.854)  0.861 

(0.699)  0.897 
(1.059) 

α2  0.162** 
(0.084)  0.139 

(0.053)  0.103** 
(0.051) 

Log L -1458.54 -1455.92 -1014.59 -1012.12 -1140.82 -1137.93 
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